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PREDICTIVE TECHNOLOGY ASSESSMENT  

BY MEANS OF A STRUCTURE-BASED METHOD OF MACHINE LEARNING 

From a user perspective, the current development of the generic term Industry 4.0 increasingly moves its 

orientation towards flexible production. Due to increasingly variable products with small quantities and  

the resulting high degree of adaptability of a plant over its entire operating phase, the need for rapid production 

commissioning gives rise to the demand for live commissioning support and technology evaluation of induced 

production start-ups. Classification axioms can be formed by 1-class learning procedures for the predictive state 

evaluation of subsequent production start-ups based on collected machine and process data from past production 

start-ups.  The starting point is an adaptive algorithm that performs a dynamic tolerance band formation based on 

different criteria, emphasizing on adaptive characteristic segmentation. This first step represents comprehensive 

condition monitoring. Based on this algorithm, correlation considerations can be performed on the data structure, 

the measured variables, and the diagnostic parameters. Moreover, the structure of production systems can and 

should be included in the analyzation, so that probabilistic causalities can be postulated and then be added to  

the underlying data sets for quantification. Using these adaptive structure-based segmentations is the first step to 

interpret data sets of new production systems without the need for complex pre-configuration. 

1. INTRODUCTION 

The generic term Industry 4.0 is characterized by buzzwords such as customized 

products, Big Data applications, and the assisted support of human beings as a creative 

decision-makers through cyber physical systems [1]. The applications in the industrial areas 

are manifold and often result from the growing demands on the industry to ensure 

competitiveness. Users focus more and more on flexible production and, as a result, demand 

adaptive and (if possible real-time) maintenance based on machine condition [2]. 

The intention is to identify potential ad hoc failures in good time and reduce 

maintenance measures to a minimum. In order to evaluate the condition of a machine,  
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an evaluation basis is required, which is normally a complex comparative database.  

The demand for adaptive maintenance is growing given increasingly complex products in 

small quantities.  

High plant availability is also of importance not only for small and medium-sized 

companies, which may only have a small number of production plants [3], but also for the 

complex production of large-scale plants such as shipbuilding plants [4] and because of the 

increasing importance of maintenance as a service itself [5]. The growing digitalization and 

progress in information and communication technology make it possible to obtain an ever-

larger volume of data – a field with new, digital business models [6].  

The following requirements are elementary in maintenance: plant availability, 

reliability, or reduction of maintenance costs, among other things. The inherent potential 

here must be tapped by exploiting the new opportunities that arise during the develop- 

ment [7].  

For process-parallel condition assessment, essential influencing variables must be 

defined, analyzed, and classified. This requires algorithmic adaptive models for  

the (preferably real-time) processing and information acquisition of the underlying 

characteristic values. This work aims at developing the basis of a fully comprehensive 

application that analyzes, classifies, and evaluates (new) technologies autonomously (with 

the meaning of machine learning) without the need of a complex database for comparison. 

Rather, the state is derived from “good” data, i. e., data from error-free machine operations. 

The procedure can be divided into three parts: data pre-processing, adaptive 

segmentation, and parameter interpretation. First, the data must be extracted and brought 

into a compatible condition with the application (data pre-processing). Subsequently,  

the data-based state evaluation takes place in which the first step is to subdivide the data 

into parts/phases according to their curve structure (adaptive segmentation). In the following 

step, the data is analyzed in a phase-related manner (parameter interpretation). 

As the aim is to build a comprehensive application, this evaluation should apply to 

different data curves, without defining the phases manually. This paper will describe  

the second part mentioned previously: the adaptive subdivision/segmentation of data into 

parts, which continuously show a similar characteristic profile, curve over curve.  

The software environment MATLAB was used for this purpose. 

2. CYCLICAL PROCESSES 

Mechatronic components and systems already provide a large amount of data. Current 

developments increasingly strive to gain information from large datasets [8]. However, 

individual values are not very significant. Therefore, several data values from the same 

action must be provided in order to examine them for correlations or irregularities.  

The following consideration is based on cyclical processes, recurring processing 

steps/operations, which usually characterize a production system. At different processing 

stations, specific work processes are performed in a determined rhythm, leading to 

characteristic data curves, marked by concise extremes or (almost) constant level, among 

other things. 
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However, it is the overall machining of a component during one rotation that 

represents a cyclic process and the individual work processes, including generally cyclic 

activities. In order to investigate more precisely whether anomalies occur in the overall 

machining process, which could indicate a machine failure, it is recommended to compare 

the individual areas with their specific behavior. Not only could cyclic phase-limited faults 

be detected, but also wear processes caused by specific machine operations could be 

identified. 

A phase is defined as a section in a data graph with a characteristic cyclic curve in  

the following chapters. Figure 1 shows the average motor current curve of a processing 

station during the full rotation of the turntable of a rotary transfer machine. Various 

machining operations such as countersinking, crimping, milling or drilling operations can be 

carried out at the processing stations on this type of machine [9], which leads to individual 

characteristic curves.  

 

Fig. 1. Motor current curve of the main drive of a rotary transfer machine   

Figure 1 shows areas that have increasing, decreasing, or steady characters. Usually, 

cyclic processes are now examined for analytical-technical relationships in order to 

subdivide the data curve meaningfully, as shown in Fig. 2. However, an agile, continually 

changing production environment would require constantly new parameterization. Since 

each parameterization requires complex detailed knowledge of the production process  

[e.g., 10, 11], this would be an excellent task given current developments (e.g., flexible 

production). Moreover, the time required for each parameterization [12] also needs to be 

considered and the feasibility. 

This gives rise to the demand for a transferable application for monitoring the essential 

functions and the key components. The challenge is to implement an algorithm that adapts 

to the changing production environment, including changing machines and changing 

processes. 

As illustrated in Fig. 2 (upper part), the subdivision of the data curve correlates with 

the data structure: increasing character in Section 1, 3, 5 and 9, decreasing character in 

Section 2, 4, 6 and 8, and (nearly) steady character in Section 7. 
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Fig. 2. Derived phase boundaries 

Instead of the segmentation based on the mechanical effects chain, the incentive is to 

automatically subdivide the signals based on the data structure, as described in the following 

Section 3. Thus, it would not be necessary for the machine operators themselves to 

continually change the parameters. Instead, the characteristic sections in the data curve  

of changing production starts are identified automatically. Based on the segmentation,  

a phase-specific analysis can then be performed, using e.g., statistical calculation methods 

such as Gaussian normal distribution.  

A further advantage lies in the fact that even complex characteristic values (e.g.,  

a sufficient vibration level) can be evaluated. Technical interdependencies are not always 

directly apparent or the data progression may be “shifted” to the executed processes (e.g., 

due to elasticities). Nevertheless, it is important to analyze the machine’s long-term 

behavior to answer questions such as the following: Does the machine still have the same 

performance as it did yesterday at this time? Even if the cause of irregularities is not 

immediately apparent at first, phase-specific analyses can provide information about  

the concrete processing procedures. There are different components running during  

the machining operations in the individual phases. Therefore, it is necessary to narrow down 

the irregularities to those phases affected in order to react cause-related without the need for 

component-specific sensors. 

Thus, the overall idea consists of data-based adaptive interpretation without pre-

estimations and pre-definitions of hard limits. 
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3. ADAPTIVE DATA/SIGNAL SEGMENTATION APPROACH 

1-Data smoothing 

Although the data in the phases shown in Fig. 3 generally show a characteristic course 

structure (e.g., rising, falling), they are only discernible in the overall view. On closer 

inspection, the progression is a sequence of rising and falling straight lines between two 

data points. Therefore, for segmentation, it is necessary to indicate the basic structure of the 

data curve. 
 

 

 

Fig. 3. Overall processing of the characteristic value 

 
 

Fig. 4. Smoothed data curve 
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For this reason, the data was filtered. In MATLAB, there are different filter methods 

such as Savitzky-Golay, lowpass, or local regression (including rloess). Rloess was chosen 

for this work. This is a local regression that applies the least-squares method and the 2nd-

degree polynomial, which gives outliers a lower weighting, thus weighting values outside 

the 3 boundaries with 0. 

Figure 4 shows the smoothing of the motor current curve data from Fig. 1. It is evident 

that the extremes of the smoothed data curve characterize the start and the end of a phase. 

2-Determine segmentation relevant extremes 

The extreme values are then determined based on the smoothed characteristic curve. 

MATLAB provides the findpeaks-function in the Signal Processing Toolbox. This enables 

the determination of x- and y-coordinates, and dominance and prominence (further details 

see below).  

The findpeaks-function is used for maxima. The same function can also be applied to 

minimum values by mirroring the motor current curve on the x-axis. Subsequently, it is 

necessary to reverse the y-values (multiplication by minus one) [13, 14]. 

The fundamental idea of the adaptive segmentation is to perform clustering based on 

phase-marking peaks, thus determining the phase boundaries (= cluster centers). Peaks 

result from changes in the monotony of the data curve, even slight changes (see Fig. 5). 

However, smaller peaks distort the cluster result. Therefore, it is required to select non-

phase-marking peaks. 

Fig. 5. Possible phase boundaries without selection of non-phase-marking peaks 

A similar topic has been applied to determine phase-marking peaks: the categorization 

of mountains, which uses the “dominance” and “prominence” of a peak. “Dominance” 

indicates the distance to the next higher elevation. Therefore, mountains are dominant since 

they are higher than others in their surroundings [15]. “Prominence” is also known as the 

difference between the ridge and the reference saddle, the lowest point between this peak 
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and the higher one [16]. Therefore, the prominence of the highest mountain of a continent 

would be equal to its own height [15]. Figure 6 illustrates an example of a peak’s 

prominence and dominance. 

     

Fig. 6. Prominence and dominance of a peak 

The classification of mountains differs according to literature and country.  

The approach to the selection of peaks found here goes back to [17] in which it calculates 

the summit autonomy based on three factors, see Table 1. The third factor, the altitude, 

however, is not transferable to this context. Not only is the reference axis missing for 

determining minima, but it would also not be possible to categorize them in the approach  

of a fully comprehensive application (e.g., peaks from a filtered data course with generally 

high y-values would tend to be categorized higher). 

Table 1. Calculating the indices for peak selection  

Factor Index referred to [17] Index for selection of peaks 

Prominence 𝐸𝑃 = −𝑙𝑜𝑔2 (
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒

100
) 𝐸_𝑃𝑒𝑎𝑘𝑃 = −𝑙𝑜𝑔2 (

𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 [𝐴]

𝑚𝑎𝑥. 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 [𝐴]
) 

Dominance 𝐸𝐷 = −𝑙𝑜𝑔2 (
𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 [𝑚]

100,000
) 𝐸_𝑃𝑒𝑎𝑘𝐷 = −𝑙𝑜𝑔2 (

𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑐𝑒 [°]

𝑚𝑎𝑥. 𝑝𝑟𝑜𝑚𝑖𝑛𝑒𝑛𝑐𝑒 [°]
) 

Altitude 𝐸𝐻 = −𝑙𝑜𝑔2 (
𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒 𝑝𝑒𝑎𝑘 [𝑚]

8,848
) - 

Similarly, a prominence concerning one's own height shall be considered. This is 

reasonable if, theoretically, the data value is subject to extreme fluctuations. Otherwise, 

relative values with relatively small fluctuations in the numerator and denominator would 

have no significance. In nature, mountains can be as high as the Himalaya or can have  

a reference saddle at sea level, meaning that the data value could be unusually large  

or even 0. Consequently, a prominence relative to one's own altitude may make sense 

regarding the classification of mountains, but not necessarily for the classification of phase-

marking peaks on which this analysis is based. Furthermore, it would be questionable to 

what extent the comparability of maxima and minima would be given if minima were set in 
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relation to their own height. For this reason, the prominence of a peak was compared with 

the maximum prominence over the entire period (in this case the unit is given in [A]). 

Leonhard W. [17] determines the dominance factor using the ratio of the respective 

prominence value to 100,000 km. Once again, it is questionable to what extent such a fixed 

value can be defined in the sense of a fully comprehensive application. For this reason,  

the two factors were set concerning the respective maximum value throughout the entire 

period (here 360°). 

Summits can have a high prominence with low dominance or vice versa, but according 

to [17], these two values have a more significant impact the lower the summit is. 

Furthermore, significant peaks (characterized by high prominence and dominance value) 

would never occur together with a high burr and low saddle. In conclusion, a phase-marking 

peak would have both the highest possible value of prominence and dominance. 

Based on the prominence and the dominance of a peak, phase-marking could be 

distinguished from non-phase-marking peaks.  

3-Determine number of clusters for k-means clustering 

These phase-marking peaks can then be clustered, followed by the determination  

of the phase boundaries. This is the principal idea. The data is clustered according to the  

k-means approach (for advantages of this method, see below). The number of clusters must 

be specified. Despite the preceding selection of phase-marking peaks, the number  

of identified peaks can deviate over several data curves. So, the number of peaks over a data 

curve cannot be defined as the number of clusters (≙ number of phases). For clustering 

according to the k-means principle, the number of clusters must be specified. There is no 

specific solution concept [18], but several approaches exist, such as the elbow method [19], 

gap method, or silhouette method [20, 21]. All these methods intend to find the number  

of clusters where adding another one does not improve data modeling (regarding  

the original purpose/intention) [22]. For the presented case, the silhouette approach has been 

used and extended. The silhouette coefficient is a measure of how well a value fits into  

the cluster assigned to it (compared to others) and is defined as follows [23].  

3.1. SILHOUETTE COEFFICIENT 

𝑠(𝑖) =
𝑏(𝑖) − 𝑤(𝑖)

𝑚𝑎𝑥{𝑏(𝑖),𝑤(𝑖)}
  (1) 

where:  

s(i) – silhouette coefficient of object i,  

b(i) – average distance of object i to objects of the nearest cluster,  

w(i) – average distance of object i to objects of the same cluster.  

The silhouette value is maximum, and at best 1, for objects (in the following also 

called data nodes) equivalent to the cluster center. A value of 0 indicates that data points 

cannot be uniquely assigned to either one or another cluster. 

If the number of clusters is determined solely based on the silhouette coefficient,  

the “fit” of these data points to the cluster is taken into account, but not the data quantity 

(and in this case, peaks) that has been assigned to the clusters (in this paper also defined as 
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cluster size). This may be irrelevant for some applications, but not for this one. The extreme 

values on which the clustering is based are distributed equally over all cycles considered, 

when possible, and only then can they be regarded as representative phase boundaries. Thus, 

it is not sufficient to merely consider the “fitting accuracy” without taking into account an 

even distribution of the values over the clusters. Clusters that differ significantly in their 

size would indicate a grouping of phase segments – assuming that the number of peaks per 

cluster is almost equal. 

For this reason, not only the silhouette coefficient is considered, but also the number of 

peaks per cluster. Four indices are set up. If possible, I_silhouette, I_clustermin, and 

I_clustermax are equal to 1 and I_width equal to 0; see Eq. (2) to (4) below. The first index 

value indicates the average “accuracy of fit” of all data points to their clusters; see Eq. (2).  

3.2. INDEX I_SILHOUETTE 

 𝐼_𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 =
1

𝐼
∑

𝑏(𝑖)−𝑤(𝑖)

𝑚𝑎𝑥 {𝑏(𝑖),𝑤(𝑖)}

𝐼
𝑖=1  (2) 

where:  

I – total number of objects 

b(i) – average distance of object i to objects of the nearest cluster 

w(i) – average distance of object i to objects of the same cluster 

As previously mentioned, ideally, peaks are equally significant across all curves. This 

would result in an equal number of data nodes per cluster. A median value can be derived 

from the number of objects per cluster. The number of values assigned to the “smallest 

cluster” is set in relation to the median, see Eq. (3).  

3.3. INDEX I_CLUSTERMIN 

𝐼_𝑐𝑙𝑢𝑠𝑡𝑒𝑟min =
𝑛𝑢𝑚min

𝑛𝑢𝑚med
 (3) 

where:  

nummin – number of objects within a cluster with the minimum number of objects over  

 all clusters, 

nummed – median number of objects over all clusters. 

Assuming analogy with the previous index, the “largest cluster” can also be related to 

the median value, see Eq. (4). 

3.4. INDEX I_CLUSTERMAX 

𝐼_𝑐𝑙𝑢𝑠𝑡𝑒𝑟max =
𝑛𝑢𝑚med

𝑛𝑢𝑚max
 (4) 

where:  

nummed – median number of objects over all clusters, 

nummax – number of objects within a cluster with the maximum number of objects over  

 all clusters. 
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This index is an indicator of the maximum deviation of objects within a cluster. For 

each cluster, the difference is formed from its highest and lowest silhouette coefficient. It 

can be assumed that a cluster’s objects are usually close together (and thus an index value  

of 0 at best). If this is not the case, it is characterized by a high index value (maximum 1). 

3.5. INDEX I_WIDTH 

 𝐼_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 =
1

𝐶
∑ 𝑆max(𝑐) − 𝑆min(𝑐)𝐶

𝑐=1  (5) 

where:  

C – number of clusters, 

𝑆max(𝑐) – maximum silhouette coefficient of cluster c,  

𝑆min(𝑐) – minimum silhouette coefficient of cluster c.  

Note: As it is the intention to find the delta between the highest and the lowest 

silhouette coefficient within a cluster, this equation has to be adjusted for negative 

coefficients (by switching the position of 𝑆max(𝑐) and 𝑆min(𝑐)). 

A total index is then calculated. 

3.6. TOTAL INDEX 

𝐼𝑛𝑑𝑒𝑥 = 𝐼_𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 + 𝐼_𝑐𝑙𝑢𝑠𝑡𝑒𝑟min + 𝐼_𝑐𝑙𝑢𝑠𝑡𝑒𝑟max − 𝐼_𝑐𝑙𝑢𝑠𝑡𝑒𝑟 (6) 

where:  

𝐼_𝑠𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 – average silhouette coefficient over all objects,  

𝐼_𝑐𝑙𝑢𝑠𝑡𝑒𝑟min – cluster size, relation “smallest cluster” to the median cluster,  

𝐼_𝑐𝑙𝑢𝑠𝑡𝑒𝑟max – cluster size, relation “largest cluster” to the median cluster,  

𝐼_𝑤𝑖𝑑𝑡ℎ – average maximum delta of the silhouette coefficient within the clusters.  

Within a loop, by clustering and steadily increasing the number of clusters, it can then 

be determined how many clusters the phase-marking peaks should be assigned to groups  

of (almost) the same size.  

4. CLUSTERING USING THE K-MEANS APPROACH 

The purpose of clustering, finding a structure within a data set, is ambiguous from  

a mathematical point of view, and can essentially be attributed to the following 

characteristics: disjunctive, overlapping, or fuzzy clustering. For the last two characteristics, 

multiple allocation/overlapping is possible. For fuzzy clustering, e.g., the data node is 

measured by cluster similarity given the probability with which the data nodes can be 

assigned to clusters [24]. 

Although probability values about the cluster classification are informative, in the end, 

there must be specific phase boundaries (≙ specific cluster classification). Furthermore, in 

comparison with other approaches, clustering using the k-means principle is a suitable 
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method for large amounts of data [25]. Other studies, especially on the segmentation  

of large data sets, are also based on the k-means approach [26–28]. Clustering based on the 

k-means approach was chosen, considering a possible real-time application and 

unambiguous assignment requirement. 

Based on the previously determined number of clusters, the data was clustered 

according to the chosen approach. The cluster centers were then defined as phase 

boundaries. Figure 7 shows the positions of the phase-marking peaks (the peaks after the 

filtering of non-phase-marking peaks, step 2) in degrees over 112 data curves. There are 

8 phases. The phase boundaries are shown as dotted lines. 

After the first two phases mentioned at the beginning (data pre-processing and 

adaptive segmentation), a characteristic parameter interpretation can now be carried out. 

Within the determined phases, probabilistic prognoses can be formulated, see [29]. 

Furthermore, the data for the state evaluation can be analyzed for causalities.  

 

Fig. 7. Phase-marking peaks over 112 data curves 

5. INTERPRETATION 

Numerous applications are based on the same few characteristic values, such as  

the motor current or the displacement difference of measuring systems. This approach 

described here is based on auto-segmentation and the statistical evaluation of adaptive 

dynamic tolerance bands. As already mentioned, due to an increasingly flexible production 

environment, it is crucial to build an application that can analyze data adaptively. With 

constantly changing productions, it is not possible to permanently build up a new 

comparative database. In addition, there is usually no empirical knowledge. It is also 

challenging to define analysis parameters if no empirical values are given. 

Therefore, the aim was to create an application for automatically segmenting the data 

progression before phase-specific analysis could be carried out in the next step. In order to 

trace irregularities back to the causal machining components, it is necessary to detect 

affected sections in the data curve. Ultimately, the data flow areas indicate which operations 

are performed, thus pointing to the cause of any irregularity in the system. 
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However, by considering each phase separately and combining specific phases,  

the machine operator’s fault detection becomes much more straightforward and easier. 

While typical machine operators may not be able to pre-define the exact position in degrees  

a specific operation is proceeded, they often can “basically” distinguish operations if they 

are provided with demonstrative data as depicted in Fig. 8. 

 

Fig. 8. Phase-marking peaks over 52 data curves 

Based on the adaptive phase segmentation, a trend-interpretation of every single phase 

is proceeded based on principle statistic approaches such as forming an adaptive dynamic 

tolerance band based on the normal distribution. The trend-interpretation applied is classical 

fingerprint based on statistics.  

Using this approach, the data is analyzed immediately without any prior training 

phase. This is advantageous since no faulty machine states have to be forced to obtain 

representative amounts of data (which is often difficult in practice). Subsequently,  

a dynamic tolerance band (see bottom part of Fig. 8) is formed, based on “good” values. 

This means that an evaluation is performed using the last error-free (and therefore “good” 

data) machine states. The underlying principle of dynamic tolerance band formation is as 

follows: iteratively calculating the 2- and 3-σ limits based on a certain number of last data 

curves and applying them as tolerance limits to future data. In this way, data from new 

production start-ups (whether due to new machines or a new production) can be analyzed 

right from the start, and the machine condition can be evaluated. 
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6. CONCLUSION 

Today, there are already numerous applications that intend to gain information from  

a large dataset. Many of them are based on a comparison database. However, given 

increasingly flexible production environments, this is a prerequisite that can hardly be 

fulfilled. 

The intention was to develop an adaptive algorithm that can be applied to various (and 

especially changing) productions and characteristic values that can hardly be evaluated due 

to complex technical effect correlations. The approach comprises two core aspects: adaptive 

phase identification and phase-specific analysis (using dynamic tolerance band formation). 

On the one hand, machine data can be evaluated directly from the start and without  

a previous training phase. On the other hand, there is no need to pre-analyze the machining 

steps in order to define phases. Instead, in the first step, the characteristic curve (in this 

paper, the motor current curve) was filtered. As a second step, phase-marking peaks were 

detected. Finally, these peaks were clustered according to the k-means approach to 

determine the phase boundaries. Within these phases, more specific analyses could then be 

performed in order to identify irregularities more quickly and in a cause-related manner. 

Using statistical methods, an adaptive dynamic tolerance band was formed, indicating 

critical machine data.  

The adaptive phase segmentation presented here can form the basis for developing  

a flexible methodology that can be used to analyze, classify, and autonomously evaluate 

data. It would be necessary to subsequently apply this to more numerous and, above all, 

other data curves in order to confirm the reliable differentiation between smaller and phase-

marking peaks.  

As previously mentioned,  further correlation considerations can be carried out based 

on adaptive phase identification, for example, between the measured variables, the diagnos-

tic parameters, and the general conditions. Probabilistic causalities (cf. Bayesian networks, 

among other things) are to be assumed and used for data set interpretation of new 

production start-ups. Further research is required in the investigation of characteristic values 

relevant for predictions. 

It is not only essential to avoid unforeseen breakdowns, but also to increase plant 

availability or to reduce maintenance measures. The methodology presented here provides  

a valuable contribution to self-sufficient, i.e. “operator-free”, and adaptive maintenance. 

This could be important for production scenarios with generally low production volumes. 

Furthermore, against the background of current development efforts, the demand for 

flexible production is growing, increasing the need for adaptive maintenance. 

It is also conceivable that failure is not only a consequence of wear and tear but  

the result of a weakness in the system. A different approach in the data-based state 

assessment of a machine could lie in applying the algorithms created for the cause-related 

analysis of potential ad hoc failures. 
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